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Remark. Once again, note that the sentences in italics are comments, they are not things that need
to be shown.

Exercise 1. As in class, we let O = ∪Oj , with O1 = (1/3, 2/3); O2 = (1/9, 2/9) ∪ (7/9, 8/9);
O3 = (1/27, 2/27) ∪ (7/27, 8/27) ∪ (19/27, 20/27) ∪ (25/27, 26/27); and so on, and we let C be the
usual Cantor set obtained as the complement of O in the unit interval [0, 1]. Given any non-empty
open interval (a, b) contained in [0, 1], show that (a, b) ∩O is non-empty.

(This statement is equivalent to saying that (a, b) is not entirely contained in C; it can also be
phrased as the statement that O is dense in [0, 1]. As noted in class, think about the lengths of the
longest remaining subintervals after the open sets Oj up to stage N have been removed, where N is
chosen large enough depending on the width of (a, b).)

Proof. For each n ∈ N, we set

Cn = [0, 1] r
n⋃

k=1

Ok.

By construction, the length of the longest continuous subinterval in Cn is 1/3n, whence Cn does
not contain open intervals of length larger than 1/3n. Pick N ∈ N such that 1/3N < b− a. Then,
for each n ≥ N , Cn does not contain (a, b). It follows that

C =

∞⋂
n=1

Cn

cannot contain (a, b), as was to be shown. �

Exercise 2. Let O and C be as in Exercise 1, and as in class consider the characteristic function
of C, namely, f defined on the interval [0, 1] by

f(x) =

{
1 for x ∈ C;

0 for x ∈ O.
Show directly from the definition of continuity that f is continuous at every point of O, and
discontinuous at every point of C.

(This function consequently has uncountably many discontinuities, and thus in class we have
given an example of each of the following situations: a bounded function which has only countably
many discontinuities and is Riemann integrable; a bounded function which has uncountably many
discontinuities and is Riemann integrable; and a bounded function which has uncountably many
discontinuities and is NOT Riemann integrable.)

Proof. Let x ∈ [0, 1]. If x ∈ C, then any neighborhood (x−δ, x+δ) of x has a nonempty intersection
with O, whence any 0 < ε < 1/2 furnishes y0 ∈ (x− δ, x+ δ) ∩O such that

|f(x)− f(y0)| = |0− 1| = 1 > ε.
1



2 SPRING 2011, MATH 312:01

Therefore, f is discontinuous at every point of C. If x ∈ O, we may find a neighborhood of
(x− δ0, x+ δ0) entirely contained in O, via openness of O. Since f is identically 1 on O, it follows
that any y ∈ (x− δ0, x+ δ0) satisfies

|f(x)− f(y)| = |1− 1| = 0 < ε

for any ε > 0. It follows that f is continuous at every point of O. �

Exercise 3. Suppose g : [a, b] → R is continuous except at x0 ∈ (a, b) and bounded. Prove that
g ∈ R(x) on [a, b]. See Exercises 24 and 25 for generalizations of this result.

Proof. Fix ε > 0, and let

M = sup{f(x) : x ∈ [a, b]} and m = inf{f(x) : x ∈ [a, b]|};
furthermore, we set L = M−m. g is continuous on [a, x0−ε/6L], hence g is Riemann-integrable on
[a, x0− ε/6L], and there exists a partition P1 of [a, x0− ε/6L] such that U(P1, f)−L(P1, f) < ε/3.
Likewise, g is continuous on [x0 + ε/6L, b], and we may find a partition P2 of [x0 + ε/6L] such that
U(P2, f)− L(P2, f) < ε/3.

We now set P = P1 ∪ P2, and let

M ′ = sup{f(x) : x ∈ [x0 − ε/6L, x0 + ε/6L]}
and

m′ = inf{f(x) : x ∈ [x0 − ε/6L, x0 + ε/6L]}.
Then

U(P, f) = U(P1, f) + U(P2, f) +M ′ · ε
3L

and
L(P, f) = L(P1, f) + U(P2, f) +m′ · ε

3L
,

so that

U(P, f)− L(P, f) = [U(P1, f)− L(P1, f)] + [U(P2, f)− L(P2, f)] + (M ′ −m′) · ε
3L

<
ε

3
+
ε

3
+ L · ε

3L
= ε.

Note that we have used the inequality M ′ −m′ ≤M −m = L. It thus follows that f is Riemann-
integrable on [a, b]. �

Exercise 4. Assume f : [a, b] → R is continuous and f(x) ≥ 0 for all x ∈ [a, b]. Prove that if∫ b

a
f dx = 0, then f(x) = 0 for all x ∈ [a, b].

Proof. We suppose for a contradiction that f(x0) 6= 0 for some x0 ∈ [a, b]. We can then find a δ > 0
such that |f(x)− f(x0)| < f(x0)/2, i.e., f(x) > f(x0)/2, on (x0 − δ, x0 + δ). Since f(x) ≥ 0 for all
x ∈ [a, b], it follows that

U(P, f) >
f(x0)

2
· 2δ = f(x0)δ

for each partition P , whence the upper integral of f cannot be 0. This is evidently absurd, for the

value of
∫ b

a
f dx was assumed to be zero. We thus conclude that f(x) = 0 for all x ∈ [a, b]. �


