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1.4.35. Suppose x is an accumulation point of {an : a ∈ J}. Show that there is a subsequence of
(an)

∞
n=1 that converges to x.

Proof. We inductively define a subsequence (ank
)∞k=1 as follows. First, we let an1 = a1. Having

defined an1 , . . . , ank−1
, we set

dk = (1/2) ·min{|x− ai| : 1 ≤ i ≤ nk−1}

and define ank
to be any point in the intersection (x − dk, x + dk) ∩ {an : a ∈ J}; the sequence is

well-defined, since x is an accumulation point of {an : a ∈ J}.
We claim that (ank

)∞k=1 converges to x. We first note that any ε > 0 admits at least one point
an ∈ (x− ε, x+ ε) ∩ {an : a ∈ J}. Find any k such that nk > n. By construction, we have

ε ≥ |x− an| > |x− ank
|,

so that ank
∈ (x − ε, x + ε). Furthermore, we have |ank

− x| > |anl
− x| for any l > k, whence

anl
∈ (x−ε, x+ε) for all l > k. It follows that the subsequence convergest to x, as was claimed. �

1.4.36. Let (an)
∞
n=1 be a bounded sequence of real numbers. Prove that (an)

∞
n=1 has a convergent

subsequence. (Hint : You may want to use the Bolzano-Weierstrass Theorem)

Proof. By Bolzano-Weierstrass Theorem, the set {an : a ∈ N} has an accumulation point x. By
Exercise 1.4.35, there exists a subsequence (ank

)∞k=1 converging to x. �

Remark. The Bolzano-Weierstrass theorem is a characterization of sequential compactness in
Euclidean spaces. A set X ⊆ R is sequentially compact if every sequence contained in X has a
subsequence converging to a point in X. The Bolzano-Weierstrass theorem, in this terminology,
states that a set X ⊆ R is sequentially compact if and only if X is closed—i.e., X contains all
of its accumulation points—and bounded. Defining the closure of a set X ⊆ R to be the union
X ∪X ′, where X ′ is the collection of all accumulation points of X ′, we may observe further that
the assertion in Exercise 1.4.36 is “the closure of {an : n ∈ N} is sequentially compact, provided
that (an)

∞
n=1 is bounded.”

1.4.38. Prove that if c > 1, then ( n
√
c)∞n=1 converges to 1.

Proof. For each n ∈ N, we have n
√
c > 1, and the sequence is bounded below. Furthermore, c > 1

implies that
n
√
c− n−1

√
c = n

√
c(1− n(n−1)

√
c) < 0,

so that the sequence is monotone-decreasing. ( n
√
c)∞n=1 is therefore a convergent sequence. We call

the limit L. We shall now establish a preliminary

Lemma. If (an)
∞
n=1 converges to a with an ≥ 0 for all n, show (

√
an)

∞
n=1 converges to

√
a.
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Proof of the lemma. We note that

√
an −

√
a =

an − a
√
an +

√
a

for each n ∈ N. (an)∞n=1 is a convergent sequence, hence it is bounded, and we may set

m = inf{an : n ∈ N}.
Fix ε > 0, and find N such that n > N implies |an − a| < (

√
m +

√
a)ε. Then we have, for each

n > N ,

|
√
an −

√
a| =

∣∣∣∣ an − a
√
an +

√
a

∣∣∣∣ ≤ ∣∣∣∣ an − a√
m+

√
a

∣∣∣∣ < 1√
m+

√
a
· (
√
m+

√
a)ε = ε,

thus establishing our lemma. �

By the lemma, (
√

n
√
c)∞n=1 converges to

√
L. Now, (

√
n
√
c)∞n=1 = ( 2n

√
c)∞n=1 is a subsequence of a

convergent sequence ( n
√
c)∞n=1, whence it converges to L. The limit of a sequence is unique, hence

L =
√
L. Since n

√
c > 1 for all n ∈ N, L cannot be 0. We may thus conclude that L = 1. �

1.4.45. Show that if x is any real number, there is a sequence of rational numbers converging to x.

Proof. We inductively define a sequence (xn)
∞
n=1 as follows. Let x1 = 243112609 − 1. Having defined

x1, . . . , xn−1, we define xn to be any rational number between x and x + 1/n. The sequence is
well-defined, as there is a rational number between any two distinct real numbers.

We show that (xn)
∞
n=1 converges to x. Indeed, given any ε > 0, we can find an integer N such

that 1/N < ε. Hence, an ∈ (x− ε, x+ ε) for all n > N , thereby establishing the convergence. �

1.4.47. Suppose that (an)
∞
n=1 converges to A and that B is an accumulation point of {an : n ∈ J}.

Proof. As per Exercise 1.4.35, we may extract a subsequence (ank
)∞k=1 converging to B. Since

(an)
∞
n=1 is a convergent sequence, every subsequence of (an)

∞
n=1 must converge to the same limit,

whence A = B. �

2.1.1. Define f : (−2, 0) → R by f(x) =
x2 − 4

x+ 2
. Prove that f has a limit at −2, and find it.

Proof. We observe that

f(x) =
(x− 2)(x+ 2)

x+ 2
= x− 2

for all x ∈ (−2, 0). We claim that f(x) converges to -4 as x approaches −2. Indeed, given any
ε > 0, we may set δ = ε to see that |(−2)− x| < δ implies

|(−4)− f(x)| = |(−4)− (x− 2)| = |(−2)− x| < δ = ε,

as desired. �

Remark. This confirms the calculus intuition that the value at a point does not matter for
computing the limit at the point. For example, defining f : R → R by

f(x) =

{
c if x = 0,

0 otherwise,

we see that

lim
x→0

f(x) = 0,
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regardless of what c may be.

2.1.2. Define f : (−2, 0) → R by f(x) =
2x2 + 3x− 2

x+ 2
. Prove that f has a limit at −2, and find it.

Proof. We observe that

f(x) =
(x+ 2)(2x− 1)

x+ 2
= 2x− 1

for all x ∈ (−2, 0). Proceed as in Exercise 2.1.1. �
2.1.3. Give an example of a function f : (0, 1) → R that has a limit at every point of (0, 1) except
1
2 . Use the defintion of limit of a function to justify the example.

Proof. We set

f(x) =

{
0 if 0 ≤ x < 1

2 ,

1 if 1
2 ≤ x ≤ 1.

If x < 1/2, then any ε > 0 furnishes δ < |1/2− x| such that |x− y| < δ implies

|f(x)− 0| = |0− 0| = 0 < ε,

whence f converges to 0 at x. Similarly, if x > 1/2, then any ε > 0 furnishes δ < |1/2 − x| such
that |x− y| < δ implies

|f(x)− 1| = |1− 1| = 0 < ε,

whence f converges to 1 at x.
Set x = 1/2, fix ε = 1/2 and let L be any real number. If L /∈ (−1/2, 3/2), then |f(x)− L| ≥ ε

for any x, so that f does not converge to L at x. If L ∈ [1/2, 3/2), then x < 1/2 implies that

|f(x)− L| = |0− L| ≥ 1/2 = ε,

whence f does not converge to L at x. Finally, if L ∈ (−1/2, 1/2), then x > 1/2 implies that

|f(x)− L| = |1− L| ≥ 1/2 = ε,

whence f does not converge to L at x. It follows that f does not have a limit at x = 1/2. �


