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1.4.35. Suppose z is an accumulation point of {a,, : a € J}. Show that there is a subsequence of
(an)$e, that converges to x.

Proof. We inductively define a subsequence (a,, )52, as follows. First, we let a,, = a;. Having
defined ay,,,...,an, ,, Wwe set

di, = (1/2) -min{|z —a;| : 1 <i <ng_1}

and define a,, to be any point in the intersection (z — di,x + d) N {a, : a € J}; the sequence is
well-defined, since z is an accumulation point of {a, : a € J}.

We claim that (a,, )72, converges to . We first note that any ¢ > 0 admits at least one point
an € (x —e,x+¢)N{ay, :a € J}. Find any k such that n; > n. By construction, we have

e>|r—an| >|x—ap|,

so that a,, € (x — e,z + ¢). Furthermore, we have |a,, — x| > |an, — 2| for any | > k, whence
an, € (x—e,x+¢) for all ] > k. It follows that the subsequence convergest to x, as was claimed. [

1.4.36. Let (a,)22; be a bounded sequence of real numbers. Prove that (a,)$2 ; has a convergent
subsequence. (Hint: You may want to use the Bolzano-Weierstrass Theorem)

Proof. By Bolzano-Weierstrass Theorem, the set {a, : @ € N} has an accumulation point z. By
Exercise 1.4.35, there exists a subsequence (a,, )72, converging to . O

Remark. The Bolzano-Weierstrass theorem is a characterization of sequential compactness in
Euclidean spaces. A set X C R is sequentially compact if every sequence contained in X has a
subsequence converging to a point in X. The Bolzano-Weierstrass theorem, in this terminology,
states that a set X C R is sequentially compact if and only if X is closed—i.e., X contains all
of its accumulation points—and bounded. Defining the closure of a set X C R to be the union
X U X', where X’ is the collection of all accumulation points of X', we may observe further that
the assertion in Exercise 1.4.36 is “the closure of {a,, : n € N} is sequentially compact, provided
that (@)%, is bounded.”

1.4.38. Prove that if ¢ > 1, then ({/c)22; converges to 1.

n=1

Proof. For each n € N, we have {/c > 1, and the sequence is bounded below. Furthermore, ¢ > 1
implies that
o e = el = ) <o,

so that the sequence is monotone-decreasing. ({/c)S2; is therefore a convergent sequence. We call

the limit L. We shall now establish a preliminary

Lemma. If (a,)3, converges to a with a, > 0 for all n, show (\/a,)$2, converges to v/a.
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Proof of the lemma. We note that

R N A
for each n € N. (a,)52, is a convergent sequence, hence it is bounded, and we may set
= inf{a, : n € N}.
Fix € > 0, and find N such that n > N implies |a, — a| < (v/m + v/a)e. Then we have, for each

n> N,
V- vl =| 2 < | <= (Vi Ve -

thus establishing our lemma. O

By the lemma, (1/{/c)5%, converges to v/L. Now, (v/{/c)5%, = ( %/c)2, is a subsequence of a
convergent sequence ({/c)° ;, whence it converges to L. The limit of a sequence is unique, hence

L = /L. Since {/c > 1 for all n € N, L cannot be 0. We may thus conclude that L = 1. |

1.4.45. Show that if z is any real number, there is a sequence of rational numbers converging to x.

Proof. We inductively define a sequence (z,,)%_; as follows. Let z; = 243112609 _ 1 Having defined
Z1y...,Tn—1, we define x,, to be any rational number between = and = + 1/n. The sequence is
well-defined, as there is a rational number between any two distinct real numbers.

We show that (x,)52, converges to z. Indeed, given any £ > 0, we can find an integer N such
that 1/N < e. Hence, a,, € (x — ¢,z + ¢) for all n > N, thereby establishing the convergence. [

1.4.47. Suppose that (a,)2; converges to A and that B is an accumulation point of {a,, : n € J}.

Proof. As per Exercise 1.4.35, we may extract a subsequence (an,);>, converging to B. Since
(an)S2 is a convergent sequence, every subsequence of (a,)%2; must converge to the same limit,
whence A = B. d

2.1.1. Define f: (—2,0) = R by f(z) =

—4
5 Prove that f has a limit at —2, and find it.

Proof. We observe that
C(r-2)(z+2)
flay = LSS

for all z € (—2,0). We claim that f(z) converges to -4 as = approaches —2. Indeed, given any
e > 0, we may set 0 = ¢ to see that |(—2) — | < 0 implies

[(=4) = f@)[ =[(-4) = (z = 2)| = |(-2) —2[ <O =¢,
as desired. O

-2

Remark. This confirms the calculus intuition that the value at a point does not matter for
computing the limit at the point. For example, defining f : R — R by

c ifx=0,
) = {0 otherwise,
we see that

lim f(z) =0,

z—0
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regardless of what ¢ may be.

222 4 3z — 2 . .
2.1.2. Define f: (-2,0) - R by f(z) = —2i2 Prove that f has a limit at —2, and find it.
x
Proof. We observe that
 (z+2)(2x 1)
flo) =

for all x € (—2,0). Proceed as in Exercise 2.1.1. O

=2r—1

2.1.3. Give an example of a function f : (0,1) — R that has a limit at every point of (0, 1) except
%. Use the defintion of limit of a function to justify the example.

Proof. We set
0 ifo<z<i,
flz) = 1 i
1 if 5<z<1
If © < 1/2, then any € > 0 furnishes 6 < |1/2 — x| such that |z — y| < § implies
|f(z) =0l =]0-0[=0<e¢,
whence f converges to 0 at x. Similarly, if > 1/2, then any & > 0 furnishes § < |1/2 — x| such
that |z — y| < ¢ implies
[f(z) =1 =1-1[=0<e¢,
whence f converges to 1 at z.
Set x = 1/2, fix e = 1/2 and let L be any real number. If L ¢ (—1/2,3/2), then |f(z) — L| > ¢
for any x, so that f does not converge to L at z. If L € [1/2,3/2), then < 1/2 implies that

@) —Ll=0—L|>1/2=¢,
whence f does not converge to L at . Finally, if L € (=1/2,1/2), then « > 1/2 implies that
[f(z) =Ll =1 = LI > 1/2 =,

whence f does not converge to L at x. It follows that f does not have a limit at = = 1/2. |



